

#### **??**

University of Natural Resources and Life Sciences, Vienna Department of Material Sciences and Process Engineering

## Decentralized photovoltaic and electric energy storage systems for autonomous buildings and seasonal base load provision to the grid

Norbert Heinrich, BSc. DI Dr. Magdalena Wolf Univ. Prof. DI Dr. Tobias Pröll

Institute for Chemical and Energy Enginieering University of Natural Resources and Life Sciences, Vienna

#### Content



#### **?**.

- Aim of the work
- Methodology
- Profiling and seasonal classification
- Technical results
- Economical results
- Conclusion

#### **Problem & Aim**

#### Problem

Solar electricity production is fluctuating



University of Natural Resources and Life Sciences, Vienna Department of Material Sciences and Process Engineering

Challenge for the power grid due to excess energy

#### Aim

- Design of a Photovoltaic (PV) and Battery Storage System (BSS) to
- cover annual energy demand of a residential building even in winter and
- supply seasonal, uniform energy to the grid





# Methodology IV – Seasonal photovoltaic production profile





#### ?

University of Natural Resources and Life Sciences, Vienna Department of Material Sciences and Process Engineering

#### Summer:

April, May, June, July, August, September

Winter: December, January, February

**Transition period:** March, October,

November

# Methodology V – Seasonal consumption profile of a single family house





#### ?

University of Natural Resources and Life Sciences, Vienna Department of Material Sciences and Process Engineering

Quelle: BDEW (2017): Bundesverband für Energie- und Wasserwirtschaft e.V., Standardlastprofile 2017

## **Cash flow – Basic assumptions**

**Expenditures** 



??

EUR/kWp

1250

University of Natural Resources and Life Sciences, Vienna Department of Material Sciences and Process Engineering

| BSS                                    | 200   | EUR/kWh |   |  |
|----------------------------------------|-------|---------|---|--|
| Energy manager                         | 500   | EUR     |   |  |
| nsurance, maintenance, metering charge | 282   | EUR/a   |   |  |
| Parameters of depreciation             |       |         |   |  |
| Depreciation period                    | 10    | а       | • |  |
| nflation rate                          | 2     | %p.a.   |   |  |
| Revenues                               |       |         |   |  |
| Power purchase tariff                  | 0.206 | EUR/kWh | - |  |
| Feed-in tariff                         | 0.058 | EUR/kWh |   |  |
|                                        |       |         |   |  |

PV system

## Technical results – System dimensioning

## 1. Photovoltaic – Design Data



University of Natural Resources and Life Sciences, Vienna Department of Material Sciences and Process Engineering

- Data basis: 8.25 kWp PV-system in Eastern Austria
- Comparison of energy consumption and production
- Scale Up of the PV system to cover the energy demand even in winter

#### 2. Battery storage system – Design Data

- Requirement: Storage of the whole produced electricity even in summer
- Dimensioning based on electricity production and consumption in summer

## Technical results – Comparison of seasonal energy consumption and production





University of Natural Resources and Life Sciences, Vienna Department of Material Sciences and Process Engineering

- Result PV: 8.7 kWp
- Result BSS: 19.8 kWh

## Technical results – System dimensioning

#### 3. Seasonal, uniform supply to the grid

- Excess electricity feed into the grid BUT
- Controlled and uniform
- Requirement: constant grid feed-in for 24 hours





#### **?**.

## Technical results – Operation of the PV – BSS – system in summer





## Technical results – Operation of the PV – BSS – system in transition period





#### Technical results – Seasonal free storage capacity



?

**University of Natural Resources** 

## **Economic results – Cash flow**

| Exper                           | and Life Sciences, Vienna |           |                                                            |
|---------------------------------|---------------------------|-----------|------------------------------------------------------------|
| Investment costs                |                           |           | Department of Material Sciences<br>and Process Engineering |
| PV system                       | 8.7 kWp                   |           |                                                            |
|                                 | 1250 EUR/kWp              | 10844 EUR |                                                            |
| BSS                             | 19.8 kWh                  |           |                                                            |
|                                 | 200 EUR/kWh               | 3968 EUR  |                                                            |
| Energy Manager                  |                           | 500 EUR   |                                                            |
| Operation costs                 |                           |           |                                                            |
| Maintanance, insurance, counter | 282 EUR/a                 | 2845 EUR  |                                                            |
|                                 | Sum Expenditure           | 18157 EUR | Subsidies are                                              |
| Rev                             | enues                     |           |                                                            |
| Supply to the grid              | 5994 kWh/a                |           | necessary                                                  |
|                                 | 348 EUR/a                 | 3512      |                                                            |
| Savings power purchase          | 4000 kWh/a                |           |                                                            |
|                                 | 825 EUR/a                 | 8323 EUR  |                                                            |
|                                 | Sum Revenue               | 11835 EUR |                                                            |
|                                 | Financial gap             | 6322 EUR  |                                                            |



??

1 Ini sity of Natural Resources e Sciences, Vienna nent of Material Sciences cess Engineering

12.06.2018

15

## **Conclusion and Outlook I**

- Single family house:
  - 8.7 kWp Photovoltaic system
  - 19.8 kWh Battery storage system
- System covers electricity demand even in winter
- System can profide seasonal base load
  - **Summer:** 1191 W 5233 kWh
  - Transition period: 392 W 760 kWh
- Free storage capacity



#### **?**.

## **Conclusion and Outlook II**

- After 10 years:
  - Financial gap of 6322 EUR
  - Subsidies are necessary
- Investment based subsidies
  - PV: 351 EUR/kWp
  - BSS: 158 EUR/kWh
- Feed in tariffs
  - Only for electricity feed into the grid: 10.55 cents/kWh
  - Whole produced electricity: 5.87 cents/kWh



#### **?**.

## **Conclusion and Outlook III**



#### **?**.

- Not considered:
  - Subsidies storing from the grid
  - Future increased electricity consumption due to electromobility and P2H
- Political frameworks for funding must be chosen
- Bilateral agreements between prosumer and energy supplier advantageous

University of Natural Resources and Life Sciences, Vienna

Department of Material Sciences and Process Engineering Institute for Chemical and Energy Engineering Research Group Energy Technology and Energy Management

DI Dr. Magdalena Wolf

Peter Jordan Straße 82, 1190 Vienna Tel.: +43 1 47654-89315 magdalena.wolf@boku.ac.at www.boku.ac.at



#### **?**?